
Data Analysis

Kelly Ruggles, Ph.D. 
Assistant Professor, Department of Medicine

NYU Langone Medical Center
www.ruggleslab.org

September 18, 2017
Methods in Quantitative Biology



Let’s make it less vague
• How do we explore and analyze matrices of gene/protein expression? 

Gene Name Description Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
plectin isoform 1 NP_958782 1.10 2.61 -0.66 0.20 -0.49 2.77 0.86 1.41 1.19 1.10
plectin isoform 1g NP_958785 1.11 2.65 -0.65 0.22 -0.50 2.78 0.87 1.41 1.19 1.10
plectin isoform 1a NP_958786 1.11 2.65 -0.65 0.22 -0.50 2.78 0.87 1.41 1.19 1.10
plectin isoform 1c NP_000436 1.11 2.65 -0.63 0.21 -0.51 2.80 0.87 1.41 1.19 1.10
plectin isoform 1e NP_958781 1.12 2.65 -0.64 0.22 -0.50 2.79 0.87 1.41 1.20 1.09
plectin isoform 1f NP_958780 1.11 2.65 -0.65 0.22 -0.50 2.78 0.87 1.41 1.19 1.10
plectin isoform 1d NP_958783 1.11 2.65 -0.65 0.22 -0.50 2.78 0.87 1.41 1.19 1.10
plectin isoform 1b NP_958784 1.11 2.65 -0.65 0.22 -0.50 2.78 0.87 1.41 1.19 1.10

epiplakin NP_112598 -1.52 3.91 -0.62 -1.04 -1.85 2.21 1.92 3.20 1.05 -2.41 
myosin-9 NP_002464 2.04 1.59 -1.27 1.03 0.11 1.25 0.42 0.12 1.15 1.96

myosin-10 isoform 3 NP_001243024 2.10 0.51 -0.67 -0.82 0.23 1.33 0.44 -1.76 2.83 1.91
myosin-10 isoform 1 NP_001242941 2.10 0.51 -0.66 -0.82 0.23 1.29 0.43 -1.76 2.81 1.91

myosin-11 isoform SM1A NP_002465 -0.23 -2.18 -3.12 0.69 -1.93 -1.67 -0.63 -2.52 2.29 -0.09 
myosin-10 isoform 2 NP_005955 2.10 0.51 -0.69 -0.82 0.23 1.35 0.43 -1.75 2.83 1.94

myosin-11 isoform SM2B NP_001035202 -0.23 -2.14 -3.12 0.67 -1.94 -1.67 -0.62 -2.53 2.29 -0.12 
myosin-14 isoform 1 NP_001070654 -0.88 -2.88 -1.97 0.26 -0.05 3.78 -2.42 -3.10 1.56 -0.71 
myosin-14 isoform 2 NP_079005 -0.88 -2.90 -1.97 0.27 -0.04 3.80 -2.47 -3.10 1.58 -0.74 

unconventional myosin-Va isoform 1 NP_000250 -0.16 0.92 -2.73 0.03 0.45 -0.29 -1.18 1.27 1.08 -0.43 
unconventional myosin-Vb NP_001073936 -0.07 -0.88 -2.28 1.87 -0.98 0.46 -2.78 1.25 0.27 -0.17 
unconventional myosin-Vc NP_061198 -0.35 -1.02 0.02 -0.88 -1.52 2.07 1.44 -1.40 1.73 0.07

unconventional myosin-Ic isoform a NP_001074248 0.32 -0.44 0.09 0.78 -0.61 -0.39 2.44 -0.89 1.04 -0.01 
unconventional myosin-Ic isoform b NP_001074419 0.32 -0.44 0.09 0.79 -0.62 -0.39 2.44 -0.88 1.05 0.01

unconventional myosin-Id NP_056009 0.97 1.64 -0.91 0.02 0.85 1.11 1.63 -0.05 3.59 0.60
unconventional myosin-Ib isoform 2 NP_036355 1.53 2.93 -2.38 -0.76 0.56 -0.05 -0.79 1.26 0.14 1.18



Sample Dataset: Breast Cancer Proteogenomics

77 Human 
Breast Tumors

Mertins P*, Mani DR*, Ruggles KV*, Gilette M* et al., Nature 534, 55-62 (2016)

Mutation

Copy Number
Gene Expression

DNA methylation
MicroRNA
RPPA
Clinical Data

Proteomics
Phosphoproteomics

Ozenberger KE, et al., Nature Genetics 45, 1113-1120 (2013)

825 Human 
Breast Tumors

TCGA. Nature 490, 61-70 (2012)
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Copy Number Alterations (CNA)
• Changes in the genome due to duplication or deletion of large regions of 

DNA (>1kb)
• Thought to cover >10% of human genome



Gene Expression using RNA-Seq
RNAs are converted into cDNA fragment library

Sequence adapters (blue) are added to cDNA fragments

Short sequence reads from each cDNA are obtained

Reads are aligned to reference sequence and classified as 
exonic reads, junction reads or poly(A) end-reads

Used to generate a base-resolution expression profile for each gene



Protein Identification and Quantitation by 
Mass Spectrometry

Tumor 
Sample

PeptidesFractionation DigestionLysis
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Identity

Quantity

Tandem Mass Spectrometry

Discovery Proteomics: 

o Used to measure global protein 
expression (whole cell 
proteome)

o Can enrich for 
phosphopeptides to measure 
phosphorylation status

Targeted Proteomics: 

o Hypothesis driven analysis 
o Select proteins and 

representative peptides of 
these proteins to measure prior 
to run
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Data Cleaning
• Often gene and sample names are not formatted exactly as needed 

for downstream analysis 

• Or a different reference database was used and the accessions 
don’t match (ex: Ensembl vs. RefSeq)

TCGA-A2-A0CM-01A-31R-A034-07 TCGA-A2-A0D0-01A-11R-A00Z-07 TCGA-A2-A0D1-01A-11R-A034-07
UBC|7316 0.052 0.360 -0.476
GUCY2D|3000 -2.085 3.337
C11orf95|65998 0.405 0.446 1.011
C17orf81|23587 -0.129 0.273 -0.024
ANKMY2|57037 -0.890 -1.851 -1.510
TTC36|143941 -6.382

AO-A12D.01TCGA C8-A131.01TCGA AO-A12B.01TCGA
NP_958782 1.10 2.61 -0.66
NP_958785 1.11 2.65 -0.65
NP_958786 1.11 2.65 -0.65
NP_000436 1.11 2.65 -0.63
NP_958781 1.12 2.65 -0.64
NP_958780 1.11 2.65 -0.65



Data Cleaning 

• Missing data: 
• Are missing values in the dataset coded as ‘0’, ’NA’, ‘NaN’, Blanks?
• Should genes (rows) be removed if they have more than a certain number 

of missing values?

• Are there repeat samples in the matrix?
• Technical or experimental replicates?

• Are there repeat genes or proteins in the matrix? 
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Data Transformation
• Bias in omics can be defined as non-biological signal or features of 

the data that can be explained by experimental or technical 
reasons

• ”Batch Effect”

• Normalization can be used to remove these biases

Class related: 
e.g. Normal vs. disease 

Nyamundanda, 2017Goh, 2017



Data Normalization
• Simple cases: adjusting values measured on 

different scales to a common scale
• Allow the comparison of values from different data sets 

or with different protein concentrations

• Complicated cases: intention is to bring the entire 
probability distribution of adjusted values into 
alignment

• Align all data to a normal distribution
• Align quantiles of different measurements

Raw Data

Normalized: 
mean=0, std=1



Normalization Methods
• Global Adjustment

• Used to force the distribution of the log intensity values to center around the 
mean or median for each sample

• Assumptions: 
• Most gene abundances do not change, so distribution of intensities across samples 

should be similar
• LOG2 normalization 

• Simplifies statistics
• LOG2 used because we can easily translate into fold change

• Lowess regression: used in microarrays
• Quantile Normalization
• Two component Gaussian 
• Z-score Normalization



Remove “Wonky” samples
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• Some tumors have bimodal distribution of both proteins and 
phosphopeptides with lower overall abundance 

• Not a processing or technical artifact
• Not specific to subtype, PAM50 status or histology

Normal: 54 (total 75)
Bimodal: 26 (total 30)

Bimodal

Normal



Data Imputation

• Replacing missing data with substituted values
• Problems caused by missing data: 

• Introduces bias if the missingness is not random
• Makes analysis of data more difficult

• Imputing data can also introduce new bias
• In many statistical packages, if one or more missing values are 

present that case is discarded
• Does not add any bias but reduces sample size/power



19

1. Non-informative Imputation
• Fixed-value imputation: median or minimum
• Perseus (S. Tyanova, et al. 2016): sampling from 

a non-informative distribution.  

2. Low rank matrix completion
• softImpute (R. Mazumder, et al. 2010): imagine 

processing; a regularized SVD decomposition. R-
package: ‘softImpute’.

3. Prediction based imputation
• KNN: R-package: ‘pamr’.
• Lasso: R-package: ‘glmnet’.
• Xgboost (T. Chen, et al. 2016): R-package: 

‘xgboost’.

4. Machine-learning based imputation
• missForest (D. J. Stekhoven, et al. 2012): R-

package: ‘missForest’.
• ADMIN: A multi-layer prediction model learned 

through an iterative procedure.

Perseus.c (center) /.t (tail)

Prediction based imputation

Data Imputation Tools
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o Are genomic aberrations 
detectable at protein level?

o Can we use tumor 
phosphorylation/protein/gene 
expression status to predict 
effective drug combinations for 
treatment? 

o Can proteogenomics guide 
biomarker development?



Ruggles et al., MCP 16(6), 959-981 (2017)



Ruggles et al., MCP 16(6), 959-981 (2017)



Genome Annotation

• To be useful, genomes must be annotated
• Genome annotation: 

• identifying the location and function of protein coding genes
• Understand cis-regulatory sequences
• Alternative splicing

Exons

Introns



Reference Genome
• Serves as a “representative example” of a species’ set of genes
• Created by sequencing a number of donors

https://genome.ucsc.edu/FAQ/FAQreleases.html#release1

Human Reference Mouse Reference



Reference Sequence Database
• Annotated and curated genes, transcripts and proteins

Curated Protein Coding 
Swiss-Prot
UniProt
RefSeq NP

Translated Genes

TrEMBL
RefSeq XP, ZP

*Automated annotation through pattern 
matching of protein to DNA + known 
proteoin coding genes

Ensembl
UCSC

Annotated Genomes*



Genome Annotation

Ruggles & Fenyo, 2015





Genetic Variation

• Because the human species is so large, many spontaneous, 
nonlethal mutations have arisen in all human genes

• With NGS, we can now identify these mutations and study their 
evolution and inheritance across thousands of humans

• Comparing human genomes, two individuals differ in roughly 1 
nucleotide per 1000

• When two sequence variants exist and are both common (~1%) 
they are called polymorphisms

• single nucleotide polymorphisms (if substitution in 1 nucleotide)
• Indels (small insertion or deletion)
• Copy number variation (CNV), larger insertion/deletion



Genomic Variant Databases



Sequence Focused Proteogenomics

Ruggles et al., 2017



Proteogenomics and SAAP discovery 

Ruggles & Fenyo, 2016
Ruggles & Fenyo, 2015

Gene Annotation

SNV Peptide

Reference Peptide

IGV Visualization

Modeling



Proteogenomics and Novel Junction 
Discovery

Ruggles & Fenyo, 2016
Ruggles & Fenyo, 2015

Gene Annotation

Novel Splice Peptide

IGV Visualization

Modeling



Ruggles et al., MCP 16(6), 959-981 (2017)



Proteogenomic Relationships

Ruggles et al., 2017



Association Tests Comparing Data Sets
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ICA1
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Genes with Differential RNA and Protein expression
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Effect of CNA on protein abundance 
• Determine consequence of CNAs on mRNA and protein abundance 

both in ‘cis’ and ‘trans’ genes
• Used all genes with CNA, mRNA and protein measurements

• Multiple test adjusted, Pearson 
correlation coefficient

Mertins et al., 2016



Identifying Aberrant Proteogenomic Events Using Outlier Analysis

CNA

RNA

Phospho

Protein

Outlier Status

Kinase Outliers

Black Sheep

Subtype enrichment
Druggable Drivers

1. Used log2 normalized data for 668 kinases from all 77 
TCGA breast samples 

2. Found distribution for each phosphosite across 
samples

3. Flag samples with normalized phosphosite expression 
above 1.5 interquartile ranges (IQR) from the median.  

4. Repeat for CNA, RNA and protein expression



Phosphosite Outlier Enrichment in Breast Cancer Subtypes

181 phosphosite outlier kinases identified

Which phosphosite outlier kinases are enriched in the 4 represented subtypes?

Mertins P*, Mani DR*, Ruggles KV*, Gilette M* et al., Nature 534, 55-62 (2016)



HotSpot3D 

Niu*, Scott*, Sengupta* et al., Nature Genetics (2016)

Sequence variants and drug 
binding are mapped to protein 

structure

Pairwise correlations used to 
determine the impact of 

variants on drug response

Validate the impact of these 
variants in disease models

Things that are in close 
proximity in protein structure



HotSpot3D 

Intra-molecular Clusters Inter-molecular 
Clusters

Mutations clustering 
around Drug binding 

pockets

Niu*, Scott*, Sengupta* et al., Nature Genetics (2016)



Whole Genome 
Sequencing

Copy Number 
Variation
(per 10kb)

RNA-Seq 
(PolyA, Ribo0)

Exon 
expression

Global 
MS /MS(22)

Phospho 
MS/MS

a

Mapped to 
genome (PGx.)

Mapped to 
genome (PGx)

b

Chromosome 1

Basal/Luminal

LDLRAP1
ARID1A JAK1 NRAS HMGCS2

x1080.5 1.0 1.5 2.00

0

-10

10

-5

5

0

0

-10

10

200

0

-10

10

C
N

V
R

N
A

-S
eq

Pe
pt

id
es

Ph
os

ph
o

Proteogenomic Mapping



Proteogenomic Mapping



c

Peptide, Exon Expression Ratio
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Ruggles et al., MCP 16(6), 959-981 (2017)



Ruggles et al., 2017



Unsupervised Learning: Unlabeled Data



Supervised Learning: Labeled Data



Machine Learning and Disease Phenotypes

• Input can also be expression 
matrices

• RNA-seq
• DNAse-seq
• ChIP-seq
• Microarray
• Proteomics etc. 

• Can be used to distinguish 
between disease phenotypes 
and/or to identify potentially 
valuable disease biomarkers

Ruggles et al. (2017) Methods, tools and 
perspectives in proteogenomics.  MCP.  



Personalized Medicine

• Personalized medicine: algorithm 
that optimizes treatment to maximize 
efficacy and minimize risk based on 
genetic make-up

• Patient populations show high inter-
individual variability in drug response 
and toxicity. 

• Gene factors account for 15-30% of 
drug metabolism differences 

• Ability to identify gene biomarkers 
corresponding to a therapeutic effect 



Machine Learning in Multiomics

• One would expect the predictive analysis of 
proteome and phosphoproteome data to be 
more informative regarding clinical outcomes 
compared to NGS data, as these data 
modalities are more proximal to the disease. 

• These techniques have been applied to 
proteomics data to 

1. Classify clinically-relevant disease subtypes in 
cancer 

2. Define prognosis 
3. Identify biomarkers predicting drug sensitivity



• Deeb et al. used global expression patterns from 
shotgun proteomics 

• ~9000 tumor proteins 
• 20 Large B-Cell lymphoma patients

• Used SVMs to extract candidate proteins with highest 
segregating power

• Identified four proteins (PALD1, MME, TNFAIP8 and 
TBC1D4) to accurately classify Large B-Cell lymphoma  
patients, which are usually morphologically 
indistinguishable 

Can we accurately classify patients using protein 
expression?

Deeb, et al. (2015) Mol. Cell. Proteomics MCP. 14, 2947–2960



Data Integration Strategies

Ma, S et al. (2016) AMIA 
Summits Transl. Sci. Proc. 2016, 
52–59 



Data Integration Strategies continued 

Ma, S et al. (2016) AMIA 
Summits Transl. Sci. Proc. 2016, 
52–59 



• Ray et al. used unimodal and “multi-modal” 
approaches to predict clinical phenotypes using 

• RNA-Seq, gene expression, and Reverse Phase 
Protein Array (RPPA) 

• Found no advantage to combining data 
modalities compared to individual platform 
analysis 

• Gene expression data was consistently more 
predictive than RPPA-based proteomics

Ray, B., et al. (2014) Sci. Rep. 4, 4411

Does multimodal analysis increase predictive power?



• Ma et al used proteogenomics data from 77 
breast tumors to predict 10 year survival in 
breast cancer

• Found that fusion of 4 data types did not 
improve model performance

• Proteomics outperformed genomics and 
transcriptomics

Ma, S et al. (2016) AMIA Summits Transl. Sci. 
Proc. 2016, 52–59 

Does multimodal analysis increase predictive power? 
Take 2



• Daemen et al, used an SVM and Random 
Forest approach to identify molecular 
features associated with drug response of 
90 drugs  in 70 breast cancer cell lines. 

• Input data was CNA, mutations, gene 
expression, promoter methylation and 
protein expression

• Found that RNA-expression had the best 
prediction but other data types improved the 
prediction in a subset of cases

Daemen et al. (2013) Genome Biol. 14, R110

Can we identify markers of drug response in cancer?



Pathway and Network Analysis 

• Classical pathway analysis techniques
• KEGG 
• Pathway Studio
• IPA

• Network analysis
• Cytoscape
• GSEA

• Causal Discovery
• PC algorithm
• Markov Blanket/Bayesian network P

Kinase
Protein A

Protein B

P

Increase in 
phosphorylation

Increase in 
expression

Increase in 
expression



Causal Discovery and Cancer Signaling 

• Goal: To use causal discovery algorithms along side 
phosphoproteomic data to better understand cancer 
signaling, discover novel drug targets and subtype based on 
pathway activity.

• Use data from phosphorylation measurement

Stained Fingers

Smoking Lung Cancer

Classic Causal Discovery Example: 



Markov Blanket
• A method that looks only at a single variable and its 

immediate surroundings
• Determines direct, close proximity causes and effects of 

known aberrant proteins
• This allows us to focus on possible clinically useful targets 

without the complication of distant causes and effects 
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Causal Discovery and Cancer Signaling 



Open Questions
• What is the best method for 

• Integrating different data modalities?
• Visualizing our findings? 

• Where should the investment be in the future in terms of data 
collection? 

• Are we missing integral data types in our analysis? 
• Metabolomics
• Other protein modifications 

• Data sharing
• Tool sharing



Paper Presentations

• Anna Yeaton: Mertins et al., Proteogenomics connects somatic 
mutations to signalling in breast cancer. Nature 534 (2016) 55-62.

• Runyu Hong: Bermudez-Hernandez et al., A Method for Quantifying 
Molecular Interactions Using Stochastic Modelling and Super-
Resolution Microscopy, bioRxiv (2017)

• Alexi Archambault: Rotmensch et al., Learning a Health Knowledge 
Graph from Electronic Medical Records. Sci Rep. 7 (2017) 5994


